SolidWorks Tutorial: Import Diagnostics (4) – Sheet Metal Conversion [VIDEO]

This is the fourth in a series of articles focused on troubleshooting and healing topological errors from geometry imported in SolidWorks.

After we demonstrated the power of the Import Diagnostics tool for healing topological errors in imported geometry, today we will consider a completely different case study; a sheet metal part that, when imported, will generate topological errors wherever faces are superimposed on each other. This type of error can be revealed by the Import Diagnostics tool, but cannot be healed automatically.

In order to solve the topological problems and convert the imported geometry into a SolidWorks Sheet Metal part, we will use various techniques you can learn in the Surface Modeling and Sheet Metal courses, including:

• copy surface
• convert a surface body into a solid body
• convert a solid body to sheet metal
• find the minimum radius of curvature of given face
• delete and patch faces
• create hems

Enjoy the video:

Note: The model shown in the video has been posted on the SolidWorks Forum by Mukesh Prasad.

Imported Bodies Video Series – 3. Repairing an Imported Model (Automatic Selection of Open Edges Using a Macro) [VIDEO]

In the first episode of this series I deleted a faulty face from an imported model, only to re-create it using the planar surface feature in the second episode. I hope you remember how cumbersome it was to select all those unconnected open loops in order to define the boundary of the new planar surface.

Fortunately, any repetitive manual work could easily be performed by macros (the equivalent of industrial robots in SolidWorks). It actually took less than 5 minutes for my colleague Adam Bridgman, who is teaching the SolidWorks Visual Basic and the SolidWorks API courses here at Javelin, to write a macro for selecting all the open edges from a part.

As you will see in the third video of this series, re-creating a planar surface with a very complex boundary becomes a simple and fast task when using Adam’s macro.

Come back to the Javelin’s blog tomorrow to read Adam’s article describing the logic behind this macro.

Imported Bodies Video Series – 2. Repairing an Imported Model (Manual Selection of Open Edges) [VIDEO]

In the first article of this series, I used different troubleshooting tools for finding the culprit that generated the imported body error, i.e. a planar face that was self-intersecting.

Deleting the “bad” face created 99 gaps between 101 surface bodies which replaced the original imported solid body.

In order to repair the model, I have to re-create the deleted face, which seems simple considering that it was planar (use the “planar surface” feature, right?), but it is complicated by the huge number of unconnected open edges that have to be selected as boundaries of the new planar face.

What is the fastest way to manually select all these open edges? What about box selecting them? Watch this video for the whole procedure in order to see the problems I encountered during the selection process and how I addressed them.

But is this really the fastest way of selecting all open edges? Wouldn’t it be nicer to be able to select them in bulk by just pressing a button?

We will provide an answer to this question in the next article of this series.

The next step is to design the connectors.

The marble is represented by a circle, a typical marble is 5/8” diameter so that is what I am designing for. There is a limitation to my design that reducing the diameter of the marble will have a significant impact on mass and therefore momentum, use a larger marble may be considered later based on simulations.  Therefore the design should be flexible to accommodate this.

Alin’s SW 2013 Pick of the Day – Fill External Cavities with Discrete Bodies Using the Intersect Tool

Last week I showed you how to use the new Intersect tool for simplifying your model by filling its internal cavities.

Today let’s consider the situation where you need to fill the external cavities from the Mr. Smiley model with discrete solid bodies in order to 3D print the end result with a bi-material printer from the Objet Connex family.

This video proposes two different solutions for this challenge. Can you think of more?

Alin’s SW2013 Pick of the Day – Conjuring a Solid Out of Thin Air with the Intersect Tool

People who have seen it in action say that the Intersect Tool is a Game Changer.

Imagine you take existing surface bodies, solid bodies and even planes and throw them in a boiling pot. Let them intersect themselves for a while (about half a second), then pick and choose whatever pieces or combination of pieces you need. The result is spectacular: one or more solid bodies created very fast.

Once you master this new command, you will find out that your feature tree becomes quite a bit shorter!

Intersect can replace whole clusters of features like: Split, Combine Add, Combine Subtract, Combine Common, Trim, Copy Bodies, Delete Bodies, Cut with Surface or Replace Face.

In this video, I am just playing with the Intersect Tool. Watch how I conjure a solid out of thin air.

Enjoy the magic!

Of course, we will explore the full functionality of the Intersect Feature in the newer future. Stay tuned.

How to Reduce the Number of Edges for an Imported Surface?

How many times have you imported a neutral format file (STEP, Parasolid, IGES) in SolidWorks and encountered challenges when working on it?
Let me give you an example regarding edges: “How many open edges does the surface from fig. 1 have?”

Fig. 1 - How many edges can you count?

Introducing Andrew Lowe – Winner of the 2011 Rocket Design Competition

Beside being an young but accomplished industrial designer, Andrew is also the author of a very interesting and useful article posted yesterday on our blog. If you need to model a real part and the only scanner you have is a regular digital camera, you better find out how to prepare pictures of real parts or hand drawn sketches as input for SolidWorks 3D models.

Andrew in action

Andrew received a Bachelor of Industrial Design in April 2011 from Carleton University in Ottawa, Ontario. He specializes in computer-aided design, manufacturing technologies, model making and graphics. He is also interested in ergonomics, marketing, psychology, perception, innovation, sustainability and the nature of work. Andrew is a competent machinist, having manufactured from scratch a cast aluminum wheelchair for his final design thesis. His design work focuses on minimalism, with an emphasis on materials and distinct lack of decoration.

You can access Andrew’s online portfolio at http://www.lowe9.com/.

When he sent us the article, he also agreed to tell our readers a few things about his background as a designer in general and a SolidWorks user in particular. Here is the full interview:

How to prepare pictures of real parts or hand drawn sketches as input for SolidWorks 3D models

As SolidWorks users, sometimes we have to create a 3D part from a sketch provided by a creative professional, such as an industrial designer. Quickly adjusting the images in Adobe Photoshop can provide more accurate results when the images are used as modelling aids in SolidWorks.

Remote Control Sketched Elevations

The above images are used in the SolidWorks Surfacing Class offered by Javelin Technologies. They are representative of a hand drawn sketch made by an Industrial Designer. Read More »

Save Time Using Simple Surfacing Techniques: Fast Embossing on Non-Planar Faces

This post originates from a discussion I had with the students in my SolidWorks Essentials class a few months ago. Sometime, in the third day of the course, we decided to take the lunch together so I could to answer all questions in regards to their further training paths.
One particular recommendation provoked quite a stir: I stated that the Surface Modeling course should be taken by any SolidWorks user, not only by industrial designers and “artists”. I mentioned the standard benefits: ability to repair imported solids, gain more control over the design intent and find unique modeling solutions. I also said that in a lot of cases they will save a lot of time using surfaces to modify solids.
At this point, the discussion became a heated debate. Apparently “everybody knows” that surfacing is “very complicated, cumbersome to use and slow”. Students who previously used other CAD software told us how hard it was for them in the past to even understand the surfacing tools found there.

Instead of arguing, I showed them a few quick examples of hybrid modeling (surfaces affecting solids). I just wanted them to remember what they saw if they ever found themselves in situations where standard solid modeling workflows were not good enough or fast enough.

Last week I received a phone call from one of these students, who remembered the demonstration. He wanted to emboss a text to his curved face in such a way that the letters would seem to radiate from the original face; something similar to the model shown in fig. 1.