SOLIDWORKS Simulation Linear Static

Instructor Led Analysis Training Course

This course is designed to make SOLIDWORKS users productive more quickly with SOLIDWORKS Simulation software. This course provides an in-depth coverage on the basics of Finite Element Analysis (FEA), covering the entire analysis process from meshing to evaluation of results for parts and assemblies. The class discusses linear stress analysis, gap/contact analysis, and best practices.

 

 

Course details and prerequisites:

Take In-class: 3 Days
OR Online: 5 Days (4 hours/day)
Type: Instructor Led
Level: Basic
Prerequisites:

After the training you will be able to:
  • Create better designs by performing analysis and evaluating the behavior of your parts and assemblies under actual service conditions

 

Course Outline

Introduction to FEA

  • About This Course
  • What is SOLIDWORKS Simulation?
  • What Is Finite Element Analysis
  • Build Mathematical Mode
  • Build Finite Element Mode
  • Solve Finite Element Mode
  • Analyze Result
  • Errors in FEA
  • Finite Elements
  • Degrees of Freedom
  • Calculations in FEA
  • Interpretation of FEA Results
  • Units of Measurement
  • Limitations of SOLIDWORKS Simulation 

Lesson 1: The Analysis Process

  • Objectives
  • The Analysis Process
  • Case Study: Stress in a Plate
  • Project Description
  • SOLIDWORKS Simulation Options
  • Preprocessing
  • Meshing
  • Postprocessing
  • Multiple Studies
  • Reports

Lesson 2: Mesh Controls, Stress Concentrations and Boundary Conditions

  • Objectives
  • Mesh Control
  • Case Study: The L Bracket
  • Project Description
  • Case Study: Analysis of Bracket with a Fillet
  • Case Study: Analysis of a Welded Bracket
  • Understanding the Effect of Boundary Conditions

Lesson 3: Assembly Analysis with Contacts

  • Objectives
  • Contact Analysis
  • Case Study: Pliers with Global Contact
  • Pliers with Local Contact

Lesson 4: Symmetrical and Free Self-Equilibrated Assemblies

  • Objectives
  • Shrink Fit Parts
  • Case Study: Shrink Fit
  • Project Description
  • Analysis with Soft Springs

Lesson 5: Assembly Analysis with Connectors and Mesh Refinement 

  • Objectives 
  • Connecting Components 
  • Connectors 
  • Mesh Control in an Assembly 
  • Case Study: Cardan Joint 
  • Problem Statement 
  • Part 1: Draft Quality Coarse Mesh Analysis 
  • Part 2: High Quality Mesh Analysis

Lesson 6: Compatible/Incompatible Meshes

  • Objectives
  • Compatible / Incompatible Meshing
  • Case Study: Rotor

Lesson 7: Analysis of Thin Components

  • Objectives
  • Thin Components
  • Case Study: Pulley
  • Part 1: Mesh with Solid Elements
  • Part 2: Refined Solid Mesh
  • Solid vs. Shell
  • Creating Shell Elements
  • Part 3: Shell Elements - Mid-plane Surface
  • Results Comparison
  • Case Study: Joist Hanger

Lesson 8: Mixed Meshing Shells & Solids

  • Objectives
  • Mixed Meshing Solids and Shells
  • Case Study: Pressure Vessel

Lesson 9: Mixed Meshing Solids, Beams & Shells

  • Objectives
  • Mixed Meshing
  • Case Study: Particle Separator
  • Beam Imprint

Lesson 10: Submodeling 

  • Objectives 
  • Submodeling Basics 
  • Case Study: Scaffolding 
  • Part 1: Parent Study 
  • Part 2: Child Study

Lesson 11: Design Study

  • Objectives
  • Case Study: Suspension Design
  • Part 1: Multiple Load Cases
  • Part 2: Geometry Modification

Lesson 12: Thermal Stress Analysis

  • Objectives
  • Thermal Stress Analysis
  • Case Study: Bimetallic Strip
  • Examining Results in Local Coordinate Systems
  • Saving Model in its Deformed Shape

Lesson 13: Adaptive Meshing

  • Objectives
  • Adaptive Meshing
  • Case Study: Support Bracket
  • h-Adaptivity Study
  • p-Adaptivity Study
  • h vs. p Elements - Summary

Lesson 14: Large Displacement Analysis

  • Objectives
  • Small vs. Large Displacement Analysis
  • Case Study: Clamp
  • Part 1: Small Displacement Linear Analysis
  • Part 2: Large Displacement Nonlinear Analysis

Appendix A: Meshing, Solvers, and Tips & Tricks

  • Meshing Strategies
  • Geometry Preparation
  • Mesh Quality
  • Mesh Controls
  • Meshing Stages
  • Failure Diagnostics
  • Tips for Using Shell Elements
  • Hardware Considerations in Meshing
  • Solvers in SOLIDWORKS Simulation
  • Choosing a Solver

Appendix B: Customer Help and Assistance

  • Customer Help and Assistance